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1 Introduction

This note describes the design of a simplified gamma ray transport model for use in designing a sequential
Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geom-
etry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton
scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may
be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair
production would require a redesign of the simulator to incorporate photon correlation effects. The initial
design incorporates the physical effects that were present in the previous event mode sequence simulator
created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead
of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to
be marked Poisson processes that are entirely described by their rate distributions. Individual realizations
can be constructed from the rate distribution using a random Poisson point sequence generator.

2 Multiple scattering model for shield and detector

The mathematical models used for photon transport in the shield and detector are identical. The only
difference is the quantity of interest for the output. For the shield we require the rate distribution of the
photons that escape, while for the detector we require the rate distribution of the deposited energy from both
the absorbed and scattered photons. Thus we will first derive a general model for transport within a material
that incorporates the probability that a photon will escape the material, the probability that it scatters into
a different energy, and the probability it is absorbed and produces a photoelectron. These probabilities are

Figure 1: Block diagram of simulation for a single shield and detector. The source emission is characterized
a rate distribution over energy: Ṅsrc(ε) photons per MeV per second. The shield converts this to a rate
distribution of Ṅinc(ε) incident on the detector. The output of the detector is the rate distribution of
photoelectrons Ṅa(ε).
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characteristic of both the geometry and the material composition. The model is intended to describe a fixed
source-shield-detector geometry and is essentially one-dimensional. Changes in source, shield, or detector
positions require changing the input probabilities. It also assumes the photons are uncorrelated, so it cannot
incorporate pair production.

The basic model begins with the rate distribution Ṅinc(ε) of photons incident on the shield or detector
material. This is defined such that the expected number of photons with energies in the interval (ε, ε + dε)
arriving in the time interval (t, t + dt) is Ṅinc(ε) dε dt. A fraction fa(ε) of the photons in the interval
(ε, ε + dε) will be absorbed, producing photoelectrons with a rate distribution of Ṅ

(a)
1 (ε) = fa(ε)Ṅinc(ε).

The remaining photons fa(ε)Ṅinc(ε) either escape the material or scatter.1 We can write the number that
escape as Ṅ

(e)
1 (ε) = fe(ε)fa(ε)Ṅinc(ε), where fe(ε) is the fraction that escape. This leaves fa(ε)fe(ε)Ṅinc(ε)

photons that undergo scattering to different energies.
Let fs(ε|ε′) represent the fraction of photons at energy ε′ that are scattered to energy ε by one interaction

with the material. For Compton scattering the energy of the scattered photon is always less than the incident
photon so that fs(ε|ε′) = 0 for ε ≥ ε′. Using this we can write the rate distribution of singly scattered photons
as

Ṅ
(s)
1 (ε) =

∫ ∞

ε

fs(ε|ε′)fa(ε′)fe(ε′)Ṅinc(ε′) dε′ . (1)

For each photon scattered from energy ε′ to energy ε, an electron with energy ε′ − ε is produced. We can
then write the rate distribution of Compton scattered electrons as

Ṅ
(s)
1 (ε) =

∫ ∞

ε

fc(ε|ε′)fa(ε′)fe(ε′)Ṅinc(ε′) dε′ , (2)

where fc(ε|ε′) = fs(ε′ − ε|ε′). For convenience let K(ε, ε′) = fs(ε|ε′)fa(ε′)fe(ε′) and define the integral
operator K as

Kg(ε) =
∫ ∞

ε

K(ε, ε′)g(ε′) dε′ . (3)

Then we can write Ṅ
(s)
1 (ε) = KṄinc(ε).

The singly scattered photons can escape, be absorbed, or scattered again, so we can write

Ṅ
(a)
2 (ε) = fa(ε)Ṅ

(s)
1 (ε) , (4)

Ṅ
(e)
2 (ε) = fe(ε)fa(ε)Ṅ (s)

1 (ε) , (5)

Ṅ
(c)
2 (ε) =

∫ ∞

ε

fc(ε|ε′)fa(ε′)fe(ε′)Ṅ
(s)
1 (ε′) dε′ , (6)

Ṅ
(s)
2 (ε) = KṄ

(s)
1 (ε) = K2Ṅinc(ε) . (7)

For the nth order scattering we have

Ṅ (a)
n (ε) = fa(ε)Ṅ (s)

n−1(ε) , (8)

Ṅ (e)
n (ε) = fe(ε)fa(ε)Ṅ (s)

n−1(ε) , (9)

Ṅ (c)
n (ε) =

∫ ∞

ε

fc(ε|ε′)fa(ε′)fe(ε′)Ṅ
(s)
n−1(ε

′) dε′ , (10)

Ṅ (s)
n (ε) = KṄ

(s)
n−1(ε) = KnṄinc(ε) . (11)

1Notation: A bar over a fraction indicates the complement, fa(ε) = 1 − fa(ε)
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To obtain the total rate distributions of escaped and absorbed photons, we sum over all orders:

Ṅ (a)(ε) =
∞∑

n=1

Ṅ (a)
n (ε) = fa(ε)

[
Ṅinc(ε) +

∞∑

n=1

Ṅ (s)
n (ε)

]
, (12)

Ṅ (e)(ε) =
∞∑

n=1

Ṅ (e)
n (ε) = fe(ε)fa(ε)

[
Ṅinc(ε) +

∞∑

n=1

Ṅ (s)
n (ε)

]
, (13)

Ṅ (c)(ε) =
∞∑

n=1

Ṅ (c)
n (ε) =

∫ ∞

ε

fc(ε|ε′)fa(ε′)fe(ε′)

[
Ṅinc(ε) +

∞∑

n=1

Ṅ (s)
n (ε)

]
dε′ . (14)

The total rate distributions depend on the sum over all orders of scattering. Define

S(ε) = Ṅinc(ε) +
∞∑

n=1

Ṅ (s)
n (ε) =

( ∞∑

n=0

Kn

)
Ṅinc(ε) , (15)

then we have

Ṅ (a)(ε) = fa(ε)S(ε) , (16)

Ṅ (e)(ε) = fe(ε)fa(ε)S(ε) , (17)

Ṅ (c)(ε) =
∫ ∞

ε

fc(ε|ε′)fa(ε′)fe(ε′)S(ε′) dε′ . (18)

The sum S(ε) is the Neumann series solution of the operator equation S = Ṅinc + KS, or expanding the
operator

S(ε) = Ṅinc(ε) +
∫ ∞

ε

K(ε, ε′)S(ε′) dε′ . (19)

By solving this equation directly, we can calculate the rate distributions of both escaped photons and
absorbed photons (photoelectrons) to all orders of scattering. In application, we discretize the energy values
ε based on the energy resolution of the detector. The rate distributions become vectors, and the kernel
K(ε, ε′) becomes a matrix. The integral equation (19) becomes a matrix equation that can be solved
numerically. In summary, we can model photon transport through material (shield or detector) to all orders
of scattering by solving the integral equation (19) for S(ε) with the rate distribution of the incident photons
Ṅinc(ε) as input. The rate distribution of the escaped photons (shield) are then given by Ṅ (e) = fefaS. The
rate distrition of absorbed photons is Ṅ (a) = faS. Figure 2 is a diagrammatic representation of the model.
However, the rate of deposited energy for the detector requires more calculation.

Though we have shown how to calculate the rate distribution of photoelectrons and Compton scattered
electrons, these are only indirectly related to the detector response to deposited energy. A typical scenario
for a photon incident on the detector would be to Compton scatter two times, each time shifting its energy
downward, then be absorbed by an atom. This would produce two Compton electrons and one photoelectron,
whose combined energy is equal to the incident photon energy. Though the electrons are produced at
different times, the difference is too small for a detector to distinguish. Instead, the detector measures a
single impulse with energy equal to the total energy of the incident photon. Another typical scenario would
be three Compton scatters, then the photon escapes the detector. In this case, the detector measures a
single impulse with energy equal to the combined energies of the Compton electrons, which is smaller than
the incident photon. The energy carried by the escaped photon is not measured. Thus the detected energy
depends on the scattering history of the incident photon. If the photon does not escape the detector, then
all its energy is deposited in the detector regardless of how many times it scatters before being absorbed.
If the photon escapes, then the detector measures only the difference between incident and escaped energy.
Thus Ṅ (e)(ε) and Ṅ (a)(ε) are required inputs for calculating the rate distribution of the detector Ṅ (d)(ε),
but we must also take into account photon history.
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Figure 2: Diagram of photon transport model for a shield or detector. The model calculates either the rate
distribution of photons that escape the material Ṅ (e)(ε) (shield) or the rate distribution of the absorbed
energy Ṅ (d)(ε) (detector) given the rate distribution of incident photons Ṅinc(ε).

Consider a monoenergetic incident photon distribution of unit amplitude Ṅinc(ε|ε0) = δ(ε − ε0). The
rate distribution of absorbed photons (photoelectrons) and escaped photons is given by

Ṅ (a)(ε|ε0) = fa(ε)S(ε|ε0) , (20)

Ṅ (e)(ε|ε0) = fe(ε)fa(ε)S(ε|ε0) , (21)

where
S(ε|ε0) = Ṅinc(ε|ε0) +

∫ ε0

ε

K(ε, ε′)S(ε′|ε0 dε′ . (22)

The detector response is a combination of two terms. The first term represents the photons that are absorbed.
Every photon that contributes to Ṅ (a)(ε|ε0) entered with energy ε0. These photons have lost all their energy
to the detector and produce a photopeak at energy ε0:

Ṅ (d)(ε|ε0) =
∫ ε0

0

Ṅ (a)(ε′|ε0) dε′ δ(ε − ε0) + second term . (23)

The second term comes from the scattered photons that escape from the detector. For every photon of
energy ε′ that escapes from the detector, an energy of ε0 − ε′ has been absorbed by the detector. Thus the
rate distribution of energy absorption due to photons scattered out of the detector is Ṅ (e)(ε0 − ε|ε0). Thus
the rate distribution for the detector response is

Ṅ (d)(ε|ε0) =
∫ ε0

0

Ṅ (a)(ε′|ε0) dε′ δ(ε − ε0) + Ṅ (e)(ε0 − ε|ε0) . (24)

Note that photons that escape the detector without scattering (Ṅ (e)(ε0|ε0)) contribute zero energy to the
detector and can be ignored. For a more general rate distribution of incident photons we use the linearity
of the solution for the monoenergetic, unit amplitude case to write

Ṅ (d)(ε) =
∫ ∞

0

Ṅinc(ε′)Ṅ (d)(ε|ε′) dε′ . (25)

Though one can substitute the expression for Ṅ (d)(ε|ε′) into the above integral, it still leads to integrals over
Ṅ (a)(ε|ε′) and Ṅ (e)(ε|ε′). Thus we still must solve (22) for each value of ε0 in the support of Ṅinc, then
superpose the solutions using (25).
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3 Compton scattering and probability of escape

Two of the inputs to the transport model are the probability of escape fe(ε) and the conditional scattering
probability fs(ε|ε′). We will develop both of these based on Compton scattering as the main mechanism of
interaction of the photons with the material. We model the material as a cloud of electrons with average
density of Ne electrons per unit volume. Let σ(ε) be the total Compton cross-section for incident photons of
energy ε. The linear scattering coefficient µ(ε) for a homogeneous material of mass density ρ and effective
atomic number Z is[2]

µ(ε) = ρNA
Zσ(ε)

M
, (26)

where NA is Avogadro’s number and M is the molar mass of the material. The probability density function
of photon path lengths R in the material is exponential[2]:

p(R|ε) =
1

λ(ε)
e−R/λ(ε) , (27)

where λ(ε) = 1/µ(ε) is the mean-free-path (MFP) for photons of energy ε. If L is the characteristic size of
the material, then all photons with path length R > L will escape. Thus we estimate the fraction of photons
that escape as

fe(ε) =
∫ ∞

L

p(R) dR = e−L/λ(ε) . (28)

This neglects shape effects and would not be strictly valid for photons that originate within the materials,
scattered from other energies. However, we can start with the exponential form and modify the characteristic
size Leff of the material to provide a good approximation for a particular configuration:

fe(ε) = e−Leff/λ(ε) . (29)

We will calculate the conditional scattering probability using the differential cross-section for Compton
scattering and the relationship between output energy and scattering angle. For a photon of energy ε′

scattering from an electron, the output energy ε is given by

ε =
ε′

1 + ε′

εr
(1 − cos θ)

, (30)

where εr = m0c
2, and θ is the angle between the direction of the incident photon and direction of the

scattered photon. The differential scattering cross-section for unpolarized incident photons is given by the
Klein-Nishina formula:

dσs =
r2
0

2
dΩ(θ)

1 + cos2 θ

[1 + α(1 − cos θ)]2

{
1 +

α2(1 − cos θ)2

(1 + cos2 θ) [1 + α(1 − cos θ)]

}
, (31)

where α = ε′/εr, and dΩ(θ) is the differential solid angle around θ. The differential cross-section is the ratio
of power dĖ(θ) scattered into the solid angle dΩ around θ to the incident photon intensity I0. The scattered
power is related to the rate of photons scattered at angle θ: dĖ(θ) = ε dṄ(θ). The intensity is proportional
to the number of incident photons per second crossing a circle of radius r0: I0 = Ṅε/πr2

0 . Thus we can write

dṄ

Ṅ
=

dΩ
2π

1 + cos2 θ

1 + α(1 − cos θ)

{
1 +

α2(1 − cos θ)2

(1 + cos2 θ) [1 + α(1 − cos θ)]

}
(32)

where we have used equation (30) to simplify the ratio ε′/ε. We can express θ in terms of the incident and
scattered energies using (30):

cos θ = 1 − εr

(
1
ε
− 1

ε′

)
. (33)
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The differential solid angle dΩ(θ) can be written

dΩ(θ) = 2π sin θ dθ = −2π d(cos θ) = −2π
εrdε

ε2
. (34)

The conditional scattering probability specifies the fraction of photons scattered from an incident energy
ε′ to the energy ε, i.e. dṄ/Ṅ = fs(ε|ε′) dε′ = fs(ε|ε′)(dε′/dε) dε. Combining this together along with
dε/dε′ = (ε/ε′)2 gives

fs(ε|ε′) = C
εrε

ε′3

[
2 − 2εr

(
1
ε
− 1

ε′

)
+ (ε2

r + εε′)
(

1
ε
− 1

ε′

)2
]

, (35)

where C is a normalization constant. Note from equation (30) the scattered energy ε satisfies the bounds

ε0 =
ε′

1 + 2ε′/εr
≤ ε ≤ ε′ , (36)

so the normalization constant can be obtained by requiring that the integral of fs(ε|ε′) in this interval to be
unity. This requirement gives

C =
3ε′

2εr

(
1 +

2ε′

εr

)3
[
−3− 15ε′

εr
− 18ε′2

ε2
r

+
6ε′3

ε3
r

+
16ε′4

ε4
r

+
3εr

2ε′

(
1 +

2ε′

εr

)3

ln
(

1 +
2ε′

εr

)]−1

, (37)

which completes the specification of the conditional scattering probability.

4 Absorption model

Photons are absorbed through the photoelectric effect. Evans[1] notes that a crude approximation of the
cross-section is Z4/ε3 (Z is the atomic number for the material). The simplest expression for fa(ε) that
obeys the condition fa(ε) → 1 as ε → 0 would be

fa(ε) =
1

1 + (ε/εa)
3 , (38)

where εa sets the transition energy between full absorption (small ε) and low absorption (fa ∼ 1/ε3). More
detailed models certainly exist but measured cross-sections might be more practical for actual applications.

5 Generation of simulated event mode sequences

Simulated event mode sequences (EMS) for the detector can be generated from the final rate distribution
Ṅa(ε) using a Poisson point realization generator. From the definition of the rate distribution the probability
of n events with energy ε in the time interval (t0, t0 + t) is given by

P{N(t0, t0 + t|ε) = n} =
(Ṅ(ε)t)n

n!
e−Ṅ(ε)t . (39)

Equivalently, the probability distribution of interarrival times at energy ε is

f∆t(∆t|ε) = Ṅ(ε)e−Ṅ(ε)∆t . (40)

To construct a realization of an event mode sequence we first discretize the energy domain into a finite set
of bins ε ⇒ εj : j = 1, 2, . . . , J . For energy εj generate a set of Poisson points t

(j)
m : m = 1, 2, . . . , Mj whose
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Figure 3: Configuration of simple example: a point source S emitting 900 keV photons (γ) is placed at the
center of a sphere M of hydrogen with radius L
.

interarrival times are distributed according to equation (40). Assign the weight εj to these points. Finally
sum over the energy bins to obtain a realization of the EMS:

EMS =
J∑

j=1

εj

Mj∑

m=1

δ
(
t − t(j)m

)
. (41)

With this procedure we can generate any number of realizations from the rate distribution Ṅa(ε) calculated
from the transport model.

6 Simple example

To illustrate the model, consider the simple scenario in figure 3. A point source of 900 MeV photons (gamma
rays) is enclosed in a sphere of hydrogen. The sphere radius L is set to the photon mean-free-path λ for
Compton scattering. We calculate the rate distribution of escaped photons Ṅ (e)(ε) using the simple model for
the shield. This is compared to the photon flux distribution calculated from COG, a Monte-Carlo radiation
transport code. Absorption is negligible at these energies so we can set fa = 0 in the model. Figure 4
shows the comparison for three values of effective size, Leff = L = λ, 1.43L, 2.12L. These correspond to
fe(ε) = 1/e, 0.24, , 0.12, constant over all energies (eq. 29). The value of Ṅ (e)(ε) at the photopeak (900 keV)
was normalized to the COG result for each case. The best result is obtained for Leff = 1.43L (fe = 0.24).
No attempt was made to optimize the value of Leff . The agreement is quite good, with the greatest variation
occuring at the low energies. The small slope discontinuity in the COG result at the Compton backsdcatter
energy of 200 keV is reproduced by the model.

Acknowledgment

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

References

[1] Robley D. Evans, The Atomic Nucleus, Krieger Publishing Company, Malabar, Florida, 1985.

7



0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

E (MeV)

F
lu

x 
de

ns
ity

 (
#/

M
eV

)

COG
f
e
=0.12

f
e
=0.24

f
e
 = 1/e

Figure 4: Comparison of rate distribution between COG (circles) and the simple model with m = +1 in the
Compton scattering model. The values for the escape fraction fe were chosen to bracket the COG results.
fe = 1/e is the nominal value based on the radius of the hydrogen sphere in COG.

[2] Ivan Lux and Laxzlo Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calcu-
lations, CRC Press, Boca Raton, Florida, 1991.

8


